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Abstraet--A study of the computational efficiency of two numerical methods based on a mixed finite 
difference-Galerkin technique is undertaken. This study uses steady Rayleigh-B6nard convection in a 
periodic container as a model problem. The formulation and linearization of the reduced Galerkin and 
pseudo-spectral methods is discussed. A new technique for reducing the computational effort of evaluating 
the convolution sums is used. It is found that the reduced Galerkin method allows greater linearization of 
the equations of fluid motion. Additionally, the reduced Galerkin method is approximately three times 
faster than the pseudo-spectral method for the problem studied. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

The study of buoyancy-driven fluid motion is impor- 
tant to many areas of the scientific community from 
geology and meteorology to heat transfer and non- 
linear dynamics. For  example, motion inside the 
Earth's mantle is caused by buoyancy effects. It has 
recently been demonstrated that internal heating due 
to viscous dissipation can significantly alter the con- 
vection patterns [1]. In the heat transfer community, 
natural convection is an extensively studied topic [2]. 
In the nonlinear dynamics field, certain natural con- 
vection problems represent important pattern forming 
systems [3] and containing rich bifurcation structure 
[4]. Rayleigh-B6nard convection is a paradigm of this 
class of problems and has been extensively studied [5]. 
For  this reason the numerical methods explored in this 
paper will use two-dimensional (2D) steady Rayleigh- 
B~nard convection as a model problem. 

In the study of fluid dynamics, numerical com- 
putation is a widely used and important tool. The 
numerical solution provides local information which 
can be very expensive or impossible to obtain using 
experimental methods [1, 6]. Several numerical 
methods are commonly in use. These include the con- 
trol volume [7], finite difference [8], finite element [9] 
and spectral methods [10], among others. For  some 
problems, spectral methods offer computational 
advantages over other methods [11]. 

When the equations which describe the physical 
system are nonlinear or contain non-constant 
coefficients spectral methods (for example Galerkin 
methods) are impractical, except for cases where very 
low spatial resolution is required [12]. This is because 
the majority of the computational effort is required to 

evaluate the forcing vector, b, of the linearized system 
of equations 

Ax = b. (1) 

For  the Galerkin formulation of nonlinear flow 
problems, b contains the convolution sums which 
result from using global approximations (Fourier 
series, Cbebyshev polynomials, surface harmonics, 
etc.) with quadratic non-linearities [13]. When 
pseudo-spectral methods were devised, spectral 
methods become competitive with other com- 
putational methods [14, 15]. 

In this work, I present an acceleration method 
which is performed on the Galerkin equations. This 
reduced method, which was first reported by Howle 
[16], is executed entirely in the spectral space. The 
reduced Galerkin method (RGM) exploits the sparse 
nature of the convolution products by expanding the 
convolution sums and eliminating terms which are 
multiplied by zero elements of the convolution prod- 
ucts. This rather simple idea results in tremendous 
computational savings over traditional Galerkin 
methods. Additionally, the R M G  is approximately 
three times faster than the pseudo-spectral method 
(PSM) for the problem used in this paper. 

Expansion of the convolution sums is accomplished 
by a source-code-writing utility. This is a computer 
program which writes the expanded and reduced con- 
volution sums to source code files. The coding utility 
also writes the necessary header files and the Makefile. 
This makes the convolution sum expansion trans- 
parent to the user. The program needs to be re-com- 
piled only when the spectral truncation level is 
changed. 

The following sections include the formulation of 
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NOMENCLATURE 

A coefficient matrix, equation (1) 
b forcing vector, equation (1) 
D partial derivative w.r.t, z 
e: vertical basis vector 
)'i,.12 convolution summations, equations 

(17) and (19) 
g acceleration of gravity 
K,L Fourier truncation level 
p pressure 
Ra Rayleigh number, equation (5) 
Pr Prandtl number, equation (6) 
t time 
T temperature 
v, w horizontal, vertical velocity 

components 

V velocity vector 
x solution vector, equation (l). 

Greek symbols 
fl coefficient of thermal expansion 
fit relaxation parameter 
6 ..... Kronecker delta 
~,- thermal diffusivity 
,~ aspect viscosity 
v kinematic viscosity 
( vorticity, equation (8). 

Subscripts 
k l,m kth, lth, mth mode. 

the weak form of the Galerkin ordinary differential 
equations, discussion of the linearization and 
reduction, derivation of the PSM and a comparison 
of the convergence behavior and computation time of 
the two methods. 

2. GALERKIN FORMULATION 

For the horizontal fluid layer shown in Fig. 1, the 
equations describing the conservation of mass, 
momentum, and energy are 

V" V = 0 (2) 

1/~v v.vv)= (3) Prr~Z + - Vp* + RaTe: + V2V 

and 

~3T 
~ -  + V ' V T  = V2T 

where p* is the pressure perturbation, p * =  p--  
Phyd . . . . .  tic" The dimensionless equations (2)-(4) are sub- 
ject to no-slip isothermal boundary conditions and 
the Boussinesq approximation is assumed to hold. 
The Rayleigh and Prandt numbers in equation (3) are 
defined by 

Z 

~--T 

~-~TT+ AT 
Fig. 1. An unstably heated horizontal fluid layer. 

and 

rigA Td 3 
Ra (5) 

Kl '  

Pr . . . . .  . (6) 
K 

Here, fi is the isobaric thermal expansion coefficient, 
A T is the temperature difference across the fluid layer, 
d is the layer height, ~c is the thermal diffusivity and v 
is the kinematic viscosity. 

Pressure is eliminated by taking the curl of the 
momentum equation (3). The resulting conservation 
form of the vorticity transport equation is 

l (~,pr\ cat ?dvf,) ~ )  ayOT + - ~  + = RaT- ~ - V 2 ~  (7) 
(1 !,' . - 

where the vorticity 
(4) 

(?w ~?t, 
- (8) 

c?y i?z 

with v and w denoting the horizontal and vertical 
velocity components, respectively. We will retain v 
and w in equation (7) rather than use a stream func- 
tion. This requires the use of the weak form of the 
divergence-free condition to enforce mass conser- 
vation. Equation (8) is substituted into equation (7) 
and time dependent terms are dropped for the deri- 
vations which follow. 

Because of the problem's symmetry and expected 
steady roll patterns [17] at the moderate Rayleigh 
numbers used in these computations, the T and w 
fields are represented [18] by even Fourier series 

K 

Y T(y,z) ~ To(z)+x/2 ~ Tk(Z) COS(Otky ) (9) 
k - - I  

and 



Simulation of steady Rayleigh-Btnard convection 2403 

K 

w(y,z) .~ x/2 ~, Wk(Z)COS(Otky) (10) 
k = l  

while the horizontal velocity, v, is given by an odd 
Fourier series 

where 

K 
v(y, z) ~ ~/2 ~ Vk(Z) sin(o~ky) (11) 

k = l  

2xk 
~k = ~ -  (12) 

and 2 is the fluid layer aspect ratio (width/height). 
The modal amplitudes in equations (9)-(11) are func- 
tions of z only and derivatives with respect to z are 
approximated by centered, second-order finite differ- 
ences. Other trial functions are commonly used. For  
example, Thess and Orszag [6] use a Fourier expan- 
sion in the horizontal directions and Chebyshev poly- 
nomials in the vertical direction for simulation of 3D 
Btnard-Marangoni  convection. 

In the spectral space, the orthogonal basis functions 

1, x/2 sin(ct~y), x/2 cos (~y)  (13) 

are defined. The inner product 

( f ,  b)  = fb dy (14) 

projects the trial functions onto the basis. 
A detailed derivation of the weak form of the Galer- 

kin ordinary differential equations for this problem is 
given in Howle [16] and will not be repeated here. The 
zeroth temperature modal amplitude is given by 

K 

D2To = ~ (Dw,,T,,+wmDT,,) (15) 
, . = j  

where D denotes the derivative with respect to the 
vertical direction, z. The higher temperature modes 
are given by the K equations 

D2Tm-(~w2,,,)DT,,,-(ct2 + ~Dw2m)Tm 

= OTo+~(2T2mDw,,+DT2,.w,,,)+~f~ (16) 

with the convolution summation defined as 

where { = ltx/2. 
The weak Galerkin ordinary differential equations 

for the vertical velocity modal amplitudes are 

D 4 w , n q - ( ~ w 2 m ) D 3 w m + ( ~ D w 2 m - N ~ 2 ) D 2 w m  

+ (~,.4,w~,. - 4~D~w~,.- ~g4~w~,.)Dw,. 

+ (~+~,.~2~ 4~ 3 ~ - ~D w2,,- ~d?Dwz,,)w,, 

= ~t~RaT,,+~f2 

with the convolution sums 

: L L ( k=l+,.t=l~.,\ \  ~; ~; ) 

.q_ ( o3wkwl 
\ ~; CtkDWkw#) 13 ) 

and 

(18) 

(19) 

(25) 

1 
ej = x~ 2 Pr" (20) 

The convolution products in equations (17) and 
(19) are 

I 1 = (~mn"~-(~mo-[-(~mp (21) 

12 = 6m, -- 3,,o + 6,,p (22) 

13 = (~nm + (~mo -- (~mp (23) 

14 = 6m,+f,,o+6,,p (24) 

where n = k +/ ,  o = k -  l and p = l -  k. 
Equations (16) and (18) are linearized by extracting 

the l = m and k = m terms from the convolution sums, 
equations (17) and (19). Terms containing Tm and its 
derivatives are moved from (17) to the left-hand side 
of (16). Likewise, terms containing w,, and its deriva- 
tives are moved from (19) to the left-hand side of 
(18). This accounts for the indexing k = 1 ~ m and 
l = 1 ~ m in equations (17) and (19). This quasi- 
linearization [19] is expected to increase the solution 
convergence rate. 

The improvements in computational efficiency of 
the reduced Galerkin method result from reducing the 
effort in evaluating the convolution sums in (17) and 
(19) as discussed in Howle [16]. The orthogonality of 
the trial functions [equations (9), (10) and (11)] with 
the basis [equation (13)] causes the convolution prod- 
ucts [equations (21)-(24)] to be sparse. If  the con- 
volution sums are evaluated directly, this sparseness 
can not be exploited. An alternative to direct evalu- 
ation of the convolution sums is to expand the sums 
for a given truncation level, K. For  example, suppose 
the desired truncation level is K = 4 and we are solving 
for the m = 3 temperature modal amplitude, T3. 
Expanding equation (17) gives 

f~ = T~DwlI 4 + DT~ wlI1 +~ T~Dw214 + DTI w21~ 

+¼ T1Dw414 + DTIw411 + 2TEDwlI4 + DT2wlli 
1 + T2Dw214+DT2w211 +~ TzDw414+DT2w4ll 

+4T4Dw114 + DT4wlI1 + 2T4Dw214 + DTaw211. 
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Fig. 2. Fraction of non-zero components of the convolution 
product, 1~, vs truncation level, K. 

Using the convolution products, equations (21) (24), 
this is reduced to 

./i = - i Ti Dw2 4- D T I i1' 2 + ~ T I Dw 4 + D T I i1' 4 

-2T2Dwl +DT2wl +4T4Dwl +D7"4wl. (26) 

As the truncation level , /C is increased, a greater per- 
centage of  the terms in the convolution sums are elim- 
inated. This point is made graphically by Fig. 2 which 
shows the fraction of non-zero elements o fL  vs K. The 
remaining convolution products are equally sparse. 
Exploiting this sparsity by expanding and reducing 
the convolution sums as just outlined can result in 
significant computational savings. In [16]. con- 
volution sum reduction was shown to reduce both 
computat ion time and memory usage by orders of  
magnitude when compared to the Galerkin finite 
difference method. 

To make the reduction practical, the convolution 
sums must be evaluated and the source code written 
by computer. To do this, 1 wrote a short program 
(three pages of  C code) which writes a function source 
code file for each of  the K equations (17) and (19). 
Alternatively, the source code can be included in the 
calling routine by using the proper preprocessor direc- 
tives. To make compiling easier, the code generation 
program also writes the necessary header files and the 
Makefile. The entire convolution sum evaluation and 
source code generation process is transparent to the 
user. 

3. PSEUDO-SPECTRAL FORMULATION 

For the pseudo-spectral formulation, the nonlinear 
terms in equations (7) and (4) are themselves rep- 
resented by series expansions. Equation (8) is sub- 
stituted into the second and third terms on the left- 
hand side of  equation (7) and approximated by the 
series 

x//2 £ Ak(z)sin(c¢/<y). (27) 
x I 

Likewise. the second and th i rd terms in equat ion (4) 
tire wr i t ten as 

' $ T + w ~ T ~  Bo(z)+x,."2 ~ B~(z)cos(~o'). 
I'¢~ l' Z / , ~ 1  

(28) 

The series in equations (27) and (28) preserve the 
spatial symmetries [which are imposed by the trial 
functions, equations (9)-(11)] of  the terms they rep- 
resent. 

The rest of  the formulation of  the weak form of the 
pseudo-spectral case proceeds as with the Galerkin 
case. The zeroth mode temperature equation is 

D2 To = B<, (29) 

while the remaining temperature modal  amplitudes 
are found by solving the equations 

D2T.,-- o:~,, T,,, = Bm. (30) 

The vertical velocity modal amplitudes are given by 
the equations 

(D:-~ , , )2W, , ,=~mPr *A,,,+~,RaTm. (31) 

The boundary conditions for both the Galerkin and 
pseudo-spectral formulations are 

T~, <'= I 

T[~ J = T~',." = T;-,; i =w;] ;  " = w i , .  I = 0 .  (32) 

From the no-slip condition and the weak form of  the 
continuity equation 

D ~l',,, 
c,,, = - (33) 

the two additional boundary conditions required for 
equations (18) and (31) are 

Dw;,; ~ = Dw;,; i = 0. (34) 

Additionally, this weak form of the continuity equa- 
tion (33) is used to eliminate Vm from all of  the Galer- 
kin and pseudo-spectral ordinary differential equa- 
tions and thus enforces the conservation of  mass. 

As discussed in [14, 15], the pseudo-spectral com- 
putations are performed partially in spectral space 
and partially in physical space. As equation (29), the 
K equations (30), and the K equations (31) are solved, 
the new modal  amplitudes 7]~, T,,, and w,, are inverse 
transformed so that the temperature and vertical vel- 
ocity fields are known in the physical space. The z 
derivatives of  the vertical velocity amplitudes are used 
with equation (33) to compute the horizontal velocity 
amplitudes. These are inverted so the horizontal vel- 
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ocity is also known in the physical space. The non- 
linear terms [left-hand sides of equations (28) and 
(27)] are calculated in physical space where the infor- 
mation is local rather than global. They are then trans- 
formed to spectral space to find the new estimates for 
the modal amplitudes Am, B0 and B,,. A fast transform 
process [20] is used which requires only O(Nlog2 N) 
operations. The new model amplitudes are used for 
the next iteration and the process is repeated until the 
solution converges. 

By examining the left-hand sides of equations (27) 
and (28), it is evident that the number of modes, L, 
used to represent the nonlinear terms must be 2K or 
greater in order to prevent aliasing. Further, by the 
sampling theorem, a minimum of 2L (or 4K) col- 
location points must be used for physical space rep- 
resentation of these terms. For the results given in 
the next section, 2K modes are used to represent the 
nonlinear terms in the spectral space and 4K col- 
ocation points are used in the physical space. It should 
be noted that phase shifting is an alternative method 
for preventing aliasing [21, 22]. 

4. RESULTS AND DISCUSSION 

Both the reduced Galerkin and the pseudo-spectral 
methods must be under-relaxed in order to prevent 
divergence. The under relaxation is dependent upon a 
number of factors, two of which are the Rayleigh 
number and the quality of the initial guess. For both 
methods, relaxation of the vertical velocity amplitudes 
is unnecessary. The temperature modal amplitudes, 
on the other hand, are under relaxed as 

T~ w = 3rTnm~W+ ( 1 - 6 r ) T ~  d (35) 

where 0 ~< fit ~< 1. Because the two methods are lin- 
earized to a different degree, it is reasonable to expect 
the convergence rate to differ. As shown in Fig. 3, the 
optimal value of the relaxation parameter for the two 

schemes is different. The figure shows the number of 
iterations required for solution convergence vs the 
relaxation parameter, fiT. In both cases, an identical 
initial guess is used and a solution is found for 
Ra = 5000, Pr = 6 and an aspect ratio 2 = 4.0. These 
parameters give typical results. The relative per- 
formance of the two methods changes little with other 
parameter values. For the results which follow, each 
of the computational methods uses its optimal fix 
which at this Ra and Pr are 0.69 for the RGM and 
0.15 for the PSM. The figure shows that the RGM 
converges in 35 iterations while the PSM takes about 
190 iterations at optimal damping. 

Another desirable feature of the RGM convergence 
behavior is the curve shape. Since the optimal damp- 
ing parameter value must be found by trial and error, 
the shallow slope of the iteration vs 6v curve over 
a large fit range makes the choice of the damping 
parameter less critical for the RGM. Figure 3 shows 
that the PSM has a fairly narrow range of'acceptable' 
3x. The RGM, on the other hand, is less sensitive to 
the value of 6x so long as the value is less than the 
optimal. 

Convergence is achieved when a suitable norm stops 
changing. For both of the present methods the max 
norm of the amplitudes is used. For example, 

T i-I ~ e  maxo<_~<.xmaxl<_.~uz(iwik,.--w~,-, ml, lT~,.-  k,. J 

(36) 

where N Z  is the number of finite-difference points in 
the vertical direction and i is the iteration. The values 

= 10 -4 and N Z  = 51 are used for this work. 
Figure 4 shows the execution time vs truncation 

level for the two methods. While the execution time 
per iteration for the PSM is less than the execution 
time per iteration for the RGM, the number of iter- 
ations required for convergence is significantly less for 
the RGM. This is because the RGM is linearized to a 
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Fig. 3. Number of iterations required for convergence for the pseudo-spectral (left) and reduced Galerkin 
(right) methods. 
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Fig. 4. Execution time of the pseudo-spectral (upper curve) 
and reduced Galerkin (lower curve) methods. 

greater degree than  the PSM. As a result, the R G M  
requires less execution time to converge to a solution. 

The time required to compile the R G M  program 
can be considerable when the Fourier  t runca t ion  level 
is large. The 128 mode  case requires several hours  of  
compile t ime on an IBM RS/6000 model 370. This is 
because the number  of  lines of  source code for the 
reduced convolu t ion  sums is 6K3f(K) where / (K) ,  the 
fract ion of  non-zero  elements of  the convolu t ion  prod-  
ucts, is shown in Fig. 2. Here, each term is placed on 
a single line so tha t  equat ion  (26) would conta in  eight 
lines. The total  n u m b e r  of  lines of  code for bo th  con- 
volut ion sums is plotted in Fig. 5. Fo r  a specific exam- 
ple, the R G M  K = 32 program has 8736 lines of  code 
whereas the K =  128 case requires 148 536 lines of  
code for the expanded and  reduced convolu t ion  sums. 
The total  memory  required for the R G M  is greater 
than  with the PSM but  is much  less than  with the 
Galerk in  method  [16]. 
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logzOK) 

Fig. 5. Number of source code lines for the expanded and 
reduced convolution sums. 

5. CONCLUSION 

For  the case of  steady, 2D Rayle igh-B6nard  con- 
vection, I have demons t ra ted  a new method,  the 
reduced Galerk in  me thod  ( R G M ) ,  for accelerating 
convolut ion  sum evaluation.  Unl ike  the pseudo-spec- 
tral method  (PSM),  the R G M  is computed  entirely in 
the spectral space. The R G M  is linearizable to a 
greater  degree than  the PSM. As a result, the R G M  
requires fewer i terat ions for convergence than  the 
PSM. 

The R G M  has the d isadvantage  of  more  involved 
mathemat ica l  formulat ion.  For  problems which do 
not  need high spatial resolution, the increase in 
execution speed of  the R G M  is p robab ly  not  worth  
the extra formula t ion  and  coding effort. Conversely,  
for high resolution problems,  the R G M  offers sig- 
nificant computa t iona l  savings over PSM. 

The essential tool for the successful use of  the R G M  
is a coding program.  This coding program writes the 
expanded and  simplified convolut ions  sum source 
code files. Wi thou t  the use of  a code writing program,  
the R G M  formula t ion  is too labor  intensive to be of  
any practical use. 
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